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The dynamic sti!ness matrix of a centrifugally sti!ened Timoshenko beam has been
developed and used to carry out a free vibration analysis. The governing di!erential
equations of motion of the beam in free vibration are derived using Hamilton's principle and
include the e!ect of an arbitrary hub radius. For harmonic oscillation the derivation leads to
two di!erent (but of similar form) fourth-order ordinary di!erential equations with variable
coe$cients that govern the amplitudes of bending displacement and bending rotation
respectively. An outboard force at the end of the beam is taken into account which makes
possible the free vibration analysis of rotating non-uniform or tapered Timoshenko beams.
Using the Frobenius method of series solution and imposing boundary conditions, the
dynamic sti!ness matrix, which relates amplitudes of harmonically varying forces with the
amplitudes of harmonically varying displacements at the ends of the element, is formulated.
Applying the Wittrick}Williams algorithm to the resulting dynamic sti!ness matrix the
natural frequencies of a few carefully chosen illustrative examples are obtained. The results
are compared with those available in the literature. ( 2001 Academic Press
1. INTRODUCTION

The free vibration analysis of a centrifugally sti!ened Bernoulli}Euler beam has been
carried out by a number of investigators using di!erent methods [1}6]. Recently,
a contribution has been made to this literature by the present author who developed for the
"rst time a dynamic sti!ness matrix to study the free vibration characteristics of rotating
uniform and non-uniform Bernoulli}Euler beams [7]. The superiority of the dynamic
sti!ness method over "nite element and other approximate methods in predicting the
natural frequencies and mode shapes of structures or structural elements accurately is well
known [8}10]. It is also commonly accepted that the Timoshenko beam theory, which
accounts for the e!ects of shear deformation and rotatory inertia, is more accurate than the
Bernoulli}Euler beam theory, particularly when the cross-sectional dimensions of the beam
are relatively large, and when higher natural frequencies are required. Thus, the solution of
the free vibration problems of rotating Timoshenko beams using the dynamic sti!ness
method is a natural extension of the author's recent work [7]. There are of course, a number
of published papers on the subject of rotating Timoshenko beams [11}16] and on various
similar aspects of non-rotating structures [17}22] using other methods. This new
development of dynamic sti!ness theory is of considerable complexity, requiring substantial
analytical and computational e!orts. The main focus of this research is to investigate the
0022-460X/01/410097#19 $35.00/0 ( 2001 Academic Press
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free vibration characteristics of rotating. Timoshenko beams by extending the elegant
power of the dynamic sti!ness method.

This research is partly motivated by two recent papers [14, 15] on the subject in which an
inaccurate di!erential equation has unfortunately been used when solving the free vibration
problem of rotating Timoshenko beams. In particular, a signi"cant term related to the
rotational speed was omitted in these papers by their authors while formulating the
governing di!erential equations of motion for the problem and thus devaluing the theory.
As a consequence the numerical results reported [14, 15] are not su$ciently accurate
(particularly for higher rotational speeds). This, of course, contradicts the claim made by the
authors of reference [15] that their theory provides a benchmark solution to the problem
(see the last line of their conclusions). In the analysis presented below the inaccuracies of
references [14, 15] are corrected and the problem is addressed in a judicious manner using
a new approach based on the dynamic sti!ness solution to the problem. The results from the
present theory are contrasted with those reported in references [14, 15].

The investigation is carried out in the following steps. First, the governing di!erential
equations of motion of a rotating Timoshenko beam undergoing free natural vibration are
derived using Hamilton's principle. Assuming harmonic oscillation the equations are then
solved using the Frobenius method of series solution. Next, the boundary conditions for
bending displacements, bending rotation, shear force and bending moment are imposed and
the arbitrary constants are eliminated from the general solution. This essentially recasts the
ensuing equations in the form of a dynamic sti!ness matrix of a rotating Timoshenko beam
element, relating amplitudes of harmonically varying forces with amplitudes of
harmonically varying displacements at its ends. Finally, the resulting dynamic sti!ness
matrix is applied using the Wittrick}Williams algorithm [23] to obtain natural frequencies
of some carefully chosen examples. The results are compared with published results and
some conclusions are drawn.

2. THEORY

Figure 1(a) shows in a rectangular Cartesian co-ordinate system, the notation used for
a rotating Timoshenko beam which has four uniform parts AB, BC, CD and DE,
respectively, with each having uniform properties so that the assembly forms a stepped
beam. The hub radius and the rotational speed are taken to be r

H
and X, respectively, as

shown. A typical element BC (shown by the solid line in Figure 1(a)) which forms a part of
the whole assembly is shown separately in Figure 1(b). This element will be considered here
in the dynamic sti!ness analysis. It is essential that the dynamic sti!ness matrix to be
derived can be assembled for a number of such elements to form the dynamic sti!ness
matrix of the complete structure. This enables free vibration analysis of rotating tapered or
non-uniform Timoshenko beams. The origin of the element (see Figure 1(b)) is taken at the
left-hand end and is at a distance r

i
from the axis of rotation. The>-axis is considered to be

coincident with the centroidal axis of the beam whereas the Z-axis is parallel, but not
coincidental with the axis of rotation of the beam. (Due to the choice of right-handed
co-ordinate system, the X-axis is perpendicular and away from the plane of the paper.) The
total length of the stepped beam in Figure 1(a) is ¸

T
whereas the length of the typical

element BC in Figure 1(b) is ¸. An outboard force F at the right-hand end of the element BC
that may arise as a result of the adjacent elements CD and DE is taken into account when
developing the theory. Clearly, for the element DE, this force is zero.

Attention is here con"ned to the derivation of the dynamic sti!ness matrix corresponding
to the out-of-plane vibration of the beam in the>Z-plane only. The corresponding dynamic



Figure 1. (a) Co-ordinate system and notation for a rotating Timoshenko beam formed by four uniform
elements so as to form a stepped beam of length ¸

T
; (b) Co-ordinate system and notation for a rotating

Timoshekno beam element of length ¸.
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sti!ness matrix related to the in-plane vibration in the X>-plane of the beam can be derived
by following the same procedure and by suitable substitution of beam parameters [4, 7].

The two governing partial di!erential equations of motion for free vibration in the
>Z-plane of the Timoshenko beam BC are derived using Hamilton's principle (see
Appendix A for details). They are

(¹w@)@!oAwK#kAG(w@@!h@)"0, EIh@@#kAG(w@!h)!oIhG#oIX2h"0, (1, 2)

where ¹, the centrifugal tension at a distance y from the origin, is given by [7]

¹(y)"X2oA[r
i
¸#1

2
¸2!r

i
y!1

2
y2]#F, (3)

EI and kAG are, respectively, the bending the shear rigidity, o is the density of the material,
A is the area of cross-section (so that oA is the mass per unit length), I is the second moment
of area of the beam cross-section about the X-axis. A prime and an over dot denote
di!erentiation with respect to distance y and time t respectively.

Equations (1) and (2) de"ne completely the free vibration characteristics of a uniform
rotating Timoshenko beam. Note that the term oIX2h in equation (2) which can be
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signi"cant for higher rotational speed X, is omitted by the authors of references [14, 15].
The physical origin of this term lies in the fact that the centrifugal force on elements
symmetrically placed with respect to the mid-plane of the beam cross-section have di!erent
radii from the axis of rotation when undergoing bending deformation, and so have di!erent
centrifugal forces. This generates a moment which is oIX2h. (The corresponding net
centrifugal force is independent of section rotation.) For harmonic oscillation the term
oIX2h indicates an increase in rotatory inertia of the element, see equation (2).

Assuming simple harmonic oscillation, w and h can be written as

w (y, t)"=(y) eiut, h(y, t)"H (y) eiut . (4)

Substituting equation (4) into equations (1) and (2) and introducing the non-dimensional
parameter

m"y/¸ (5)

it can be shown, after considerable algebraic manipulation, that equations (1) and (2) with
the help of equation (4) can be expressed as two di!erent, but similar, fourth order ordinary
di!erential equations with variable coe$cients as follows. (Note that for a centrifugally
sti!ened Bernoulli}Euler beam the formulation leads to only one di!erential equation
which applies to both the bending displacement and the bending rotation [7].)
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where
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and

f"r2s2 (k2#g2)!1. (20)
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The di!erential equations (6) and (7) are of the same form and are amenable to power series
solution in terms of the independent variable m. Note that for a non-rotating Timoshenko
beam (g"0) the two di!erential equations become identical which accords with the
formulation given by Howson and Williams [24]. The solutions of the di!erential equations
(6) and (7) will be of the same form provided the constants C

1
}C

11
and C*

1
}C*

11
are

interpreted correctly. Using the method of Frobenius, the solution is sought in the form of
the following series [4, 7, 15]:

>(c, m)"
=
+
n/0

a
n`1

(c)mc`n, (21)

where a
n`1

are the coe$cients and c is an undetermined exponent. Substituting equation
(21) into equation (6) or (7), one obtains the following indicial equation [4, 7, 15]:

c (c!1)(c!2)(c!3)"0, (22)

and the following recurrence relationship:
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, n*0 (23)

where the "rst four coe$cients can be de"ned with the help of equations (6) (or (7)) and (21)
as follows. (Note that this formulation is similar to, but di!erent from that of reference [15]
because in equation (21), mc`n, instead of mn, has been used.)
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Equations (23)}(27) apply for the solution of=, but they can also be applied for the solution
of H provided that C

1
}C

11
are replaced by C*

1
!C*

11
. (In order to avoid confusion on asterisk

has been introduced to designate the terms as a*
n`1

to be used for the solutions of H.)
The roots of the indicial equation (22) are c"0, 1, 2, 3 so that the solutions for= and

H of each of equations (6) and (7) can be expressed as linear combinations of four
independent solutions as

= (m)"A
1
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2
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where A
1
}A

4
and B

1
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4
are two di!erent sets of constants and
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It can be shown with the help of equation (6) or (7) that the constants of A
1
}A

4
and B

1
}B

4
used in the solutions for = and H, see equations (28) and (29), are related as follows:
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The 4]4 square matrix on the right side was pre-multiplied by the inverse of the 4]4
square matrix of the left side to obtain explicit expressions for the A

1
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2
/¸, A

3
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A
4
/¸. This was achieved by making extensive use of symbolic computation [25, 26] which

was essentially desirable because the terms a
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expressions and not numbers.
In this way A
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Using the sign convention of Figure 2 and noting that a prime now denotes
di!erentiation with respect to m, the expressions for bending moment M (m) and shear force
Q(m) can be written as (see Appendix A)

M(m)"!(EI/¸) (dH/dm)"!(EI/¸) [W@(0, m)B
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4
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Figure 2. Sign convention for positive shear force (Q) and bending moment (M).

CENTRIFUGALLY STIFFENED TIMOSHENKO BEAMS 103
and
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In order to develop the dynamic sti!ness matrix of the rotating Timoshenko beam element
the boundary conditions for displacement and forces are imposed.

The end conditions for displacements and forces of the element (see Figure 3) are,
respectively, given below.

Displacements:
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1
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2
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2
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2
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Figure 3. Boundary conditions for (a) displacements and (b) forces of the rotating Timoshenko beam.

104 J. R. BANERJEE
Substituting equations (53) and (54) into equations (28) and (29) and equations (55) and (56)
into equations (45) and (46) and making use of equations (39, 40) and (47)}(52) give
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Equations (57)}(60) and (61)}(64) can be written in the following matrix form:
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and
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The dynamic sti!ness matrix K can be obtained by eliminating the constant vector B from
equations (71) and (73) to give the force}displacement relationship as
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where

K"HG~1 (76)

is the required dynamic sti!ness matrix.
Each individual element of the matrix K is generated algebraically by inverting the

G matrix and premultiplying the resulting matrix by the H matrix. This procedure was
greatly assisted by the symbolic computing package REDUCE [25, 26]. The ten
independent terms of the K matrix are obtained as
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where

j
1
"[S

2
U

4
(0)!S

4
U

2
(0)]W(2, 1)![S

2
U

3
(0)!S

3
U

2
(0)]W(3, 1)![S

3
U

4
(0)!S

4
U

3
(0)]W (1, 1),

(87)

j
2
"![S

3
W (3, 1)!S

4
W(2, 1)]. (88)

j
3
"[R

4
U

2
(0)!R

2
U

4
(0)]W(2, 1)#[R

2
U

3
(0)!R

3
U

2
(0)]W (3, 1)#[R

3
U

4
(0)!R

4
U

3
(0)]W(1, 1),

(89)

j
4
"[R

2
S
3
!R

3
S
2
]U

4
(0)#[R

4
S
2
!R

2
S
4
]U

3
(0)#[R

3
S
4
!R

4
S
3
]U

2
(0), (90)

j
5
"[R

1
S
3
!R

3
S
1
]W (3, 1)#[R

3
S
4
!R

4
S
3
]W(0, 1)#[R

4
S
1
!R

1
S
4
]W(2, 1), (91)



106 J. R. BANERJEE
j
6
"[R

3
W (3, 1)!R

4
W(2, 1)], j

7
"![R

3
S
4
!R

4
S
3
], (92, 93)

j
8
"[R

2
U

4
(1)!R

4
U

2
(1)]W(2, 1)#[R

4
U

3
(1)!R

3
U

4
(1)]W (1, 1)#[R

3
U

2
(1)!R

2
U

3
(1)]W(3, 1),

(94)

j
9
"!R

2
[W (2, 1)W@(3, 1)!W(3, 1)W@(2, 1)]!R

3
[W(3, 1)W@(1, 1)!W(1, 1)W@(3, 1)]

!R
4
[W(1, 1)W@(2, 1)!W (2, 1)W@(1, 1)], (95)

j
10
"[R

2
S
3
!R

3
S
2
]W@(3, 1)#[R

4
S
2
!R

2
S
4
]W@(2, 1)#[R

3
S
4
!R

4
S
3
]W@(1, 1), (96)

and
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The above dynamic sti!ness matrix relates to the out-of-plane motion of the beam, in the
>Z-plane of Figure 1. The dynamic sti!ness matrix for the in-plane motion (in XZ-plane
can be derived in a similar manner by suitable choice of parameters [4, 7].

2.1. APPLICATION OF THE DYNAMIC STIFFNESS MATRIX

The resultant dynamic sti!ness matrix can now be used to compute the natural
frequencies and mode shapes of a rotating Timoshenko beam with various end conditions.
A rotating non-uniform Timoshenko beam, for example a tapered Timoshenko beam, can
also be analyzed for its free vibration characteristics by idealizing it as an assemblage of
many uniform beams, and is thus treated as a stepped beam (see Figure 1). An accurate and
reliable method of calculating the natural frequencies and mode shapes is to use the
dynamic sti!ness matrix method coupled with the well-known algorithm of Wittrick and
Williams [23], which has featured in numerous papers. The algorithm, unlike its proof, is
very simple to use [8}10], but for a detailed insight interested readers are referred to the
original work of Wittrick and Williams [23]. Basically, the algorithm needs the dynamic
sti!ness matrices of individual members in a structure and information about their natural
frequencies when both ends are clamped. This information is needed to ensure that no
natural frequencies of the structure are missed. Thus an explicit expression from which the
clamped}clamped natural frequencies can be found facilitates a straightforward application
of the algorithm. D in equation (97) is such an expression because the clamped}clamped
natural frequencies are given by its zeros. It should be noted that the actual requirement of
the algorithm is to isolate these clamped}clamped natural frequencies (that is to determine
how many such natural frequencies are there below a speci"ed trial frequency) rather than
actually calculating them. The Wittrick}Williams algorithm [8}10] essentially gives the
number of natural frequencies of a structure that exists below an arbitrarily chosen trial
frequency rather than actually calculating the natural frequencies. This simple feature of the
algorithm can be used to calculate any natural frequency of the structure to any desirable
accuracy.

3. RESULTS AND DISCUSSION

Using the above theory, the natural frequencies of rotating Timoshenko beams with
cantilever end conditions were obtained for a range of illustrative examples. The results are
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presented in non-dimensional form and can be reproduced by using any set of appropriate
data. However, it is instructive to use representative values for k, E/G, r and s (see equations
(19)) so that any possibility of numerical ill conditioning (as a result of using unrealistic
values) can be avoided. During the current investigation typical numerical values used for k,
E/G, r and s and 2/3, 8/3, 0)04 and 0)08 respectively. (Note that it can be shown with the help
of equation (19) that for k"2/3 and E/G"8/3, s"2r.) It was found that the convergence
of the series solution was excellent. From a computational point of view, a total of 120 terms
was found to be completely adequate in obtaining results with su$cient accuracy.

References [14, 15], which give natural frequencies of rotating Timoshenko beams with
cantilever end condition, were used and a direct comparison of results was made. The
authors of reference [14] gave results using the transfer matrix method, but these were
reported only for the fundamental natural frequency of the beam. Nevertheless, these results
(see their Tables 3 and 4) are reconstructed using the present theory. Tables 1 and 2 show
results using the present theory and those reported in reference [14] using the transfer
matrix method. (Note that the symbol S used in reference [14] is equal to 1/r for the present
paper.)

The results of Table 1 illustrate the e!ect of the rotational speed parameter (g) on the
fundamental natural frequency of the Timoshenko beam, and as expected, when g"0
complete agreement between the two sets of results is evident. However, the disagreement
between the two sets of results increases with increasing rotational speed, and the reason for
this is, of course, the fact that the authors of reference [14] omitted the term oIX2h in their
formulation (see equation (2)). The e!ect of the Timoshenko beam parameter r ("1/S) on
the fundamental natural frequency of the beam is shown in Table 2 when the rotational
speed parameter g is set to 0 and 5 respectively. Here again the results from the present
theory match exactly with those of reference [14] for the case when g"0 (except $1 in the
last digit for a few cases, which the author believes is a rounding error in reference [14]).
Clearly, the results do not match for the case when g"5 because of the above reason. With
increasing S (and hence decreasing r) the di!erence in results diminishes, as expected.

Next, the illustrative examples of reference [15] are used for comparison. Unfortunately,
the authors of reference [15] have given only one set of tabulated (numerical) results (see
their Table 7) and they are only for the fundamental natural frequency of the rotating
Timoshenko beam. In contrast, they have given a set of six tabulated (numerical) results
for the "rst three natural frequencies of the corresponding Bernoulli}Euler beam
TABLE 1

Fundamental natural frequency of a rotating ¹imoshenko beam with cantilever end condition
for various values of the rotational speed parameter g, with r

H
"0, Ss"30 (r"1/30) and

E/kG"3)059

Fundamental natural frequency (k
1
)

g Present theory Reference [14] Error (%)

0 3)4798 3)4798 0
1 3)6445 3)6452 0)019
2 4)0971 4)0994 0)056
3 4)7516 4)7558 0)088
4 5)5314 5)5375 0)110
5 6)3858 6)3934 0)119

sThe variable S (instead of r) where S"1/r is used here for a direct comparison of results with reference [14].



TABLE 2

Fundamental natural frequency of a rotating ¹imoshenko beam with cantilever end condition
for various values of S (S"1/r), when g"0 and g"5 with r

H
"0 and E/kG"3)059

S (g"0) (g"5)

Present theory Reference [14] Present theory Reference [14]
k
1

k
1

k
1

k
1

20 3)4364 3)4364 6)3126 6)3241
30 3)4798 3)4798 6)3858 6)3934
40 3)4955 3)4954 6)4131 6)4179
50 3)5028 3)5028 6)4260 6)4294
80 3)5108 3)5108 6)4403 6)4418

100 3)5127 3)5126 6)4436 6)4446
150 3)5145 3)5144 6)4469 6)4476
200 3)5152 3)5152 6)4481 6)4485
300 3)5156 3)5155 6)4489 6)4493

TABLE 3

Fundamental natural frequency of a rotating ¹imoshenko beam with cantilever end condition
for various values of r and g, with r

H
"0, k"2/3, E/G"8/3. (¹he results shown in

parentheses are from reference [15].)

Fundamental natural frequency (k
1
)

r g"0 g"4 g"8 g"12

0 3)5160 5)5850 9)2568 13)170
(3)516) (5)585) (9)257) (13)170)

0)01 3)5119 5)5791 9)2447 13)148
(3)512) (5)580) (9)246) (13)150)

0)02 3)4998 5)5616 9)2096 13)087
(3)500) (5)564) (9)215) (13)095)

0)03 3)4799 5)5332 9)1549 12)998
(3)480) (5)539) (9)167) (13)015)

0)04 3)4527 5)4951 9)0854 12)893
(3)453) (5)505) (9)106) (12)923)

0)05 3)4187 5)4487 9)0060 12)783
(3)419) (5)463) (9)036) 12)827)

0)06 3)3787 5)3954 8)9208 12)672
(3)379) (5)415) (8)963) (12)734)

0)07 3)3335 5)3370 8)8333 12)564
(3)333) (5)363) (8)889) (12)646)

0)08 3)2837 5)2749 8)7456 12)458
(3)248)s (5)307) (8)815) (12)564)

0)09 3)2302 5)2104 8)6588 12)353
(3)230) (5)249) (8)744) (12)487)

0)1 3)1738 5)1448 8)5735 12)247
(3)174) (5)191) (8)677) (12)415)

sThis "gure is taken from reference [15] and is probably in error. It could be a typographical error and the
intended value is probably 3)284 instead of 3)248.
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Figure 4. The "rst three natural frequencies of a rotating Timoshenko beam for the case when g"4 (k
0

corresponds to the natural frequencies of Bernoulli}Euler beam).
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(see Tables 1}6, pp. 511}516 of reference [15]) which are actually peripheral to the main
investigation. Nevertheless, the results obtained from the present theory are compared with
those limited results given in reference [15]. These are shown in Table 3 along with the
results of reference [15] shown in parentheses. A complete agreement was expected because
the present theory as well as the theory presented in reference [15] are both based on the
solution of the governing di!erential equations, and therefore, both theories are expected to
give exact results. This was not to be the case except when g"0. As can be seen from the
results of Table 3, the discrepancy between the two sets of results increases with increasing
values of the rotational speed (g). The reason for this, is again because of the omission of the
term oIX2h in equation (2), by the authors of reference [15] (see their equation (10)).

The authors of reference [15] have given some graphical results, showing the variation of
the "rst three natural frequencies of the cantilever Timoshenko beam with the parameter r,
for three di!erent values of the rotational speed parameter g (see Figures 5}7 of their paper).
Using the present theory, one set of these results, which corresponds to the case g"4, is
shown in Figure 4 for comparison. A resemblance between this "gure and Figure 5 of
reference [15] seems apparent. However, when examined and inspected closely by
computed results, the discrepancy between the two "gures becomes noticeable. Figure 5
shows the di!erence in the fundamental natural frequency of the rotating Timoshenko
beam when using reference [15] and the present theory.

For completeness, two additional sets of results were obtained. Figure 6 shows the "rst
set in which the e!ect of rotational speed (g) on the "rst three natural frequencies of the
cantilever Timoshenko beam is demonstrated when r"0)04. The natural frequencies,
which are non-dimensionalized with respect to the non-rotating case, increase with
increasing g because of the centrifugal sti!ening e!ect. As expected, the e!ect is relatively
more pronounced for lower order frequencies than the higher order ones. The "nal set of
results was obtained to assess the errors incurred, as a result of using the Bernoulli}Euler
theory, as opposed to Timoshenko theory for the rotating beam. To this end the variation of
the percentage error in the third natural frequency with rotational speed (g) is shown in
Figure 7 for three di!erent values of r. The error diminishes with rotational speed. This is
expected because at higher rotational speed the centrifugal sti!ness term dominates the



Figure 5. The fundamental natural frequency of a rotating Timoshenko beam using present theory (**) and
reference [15] (- - - - -) for the case when g"4 (k

0
corresponds to the natural frequencies of Bernoulli}Euler beam).

Figure 6. The e!ect of rotational speed on the "rst three natural frequencies of a rotating Timoshenko beam (k
0

corresponds to the natural frequencies of non-rotating Timoshenko beam).
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mechanical sti!ness term with the latter being in#uenced by shear deformation and rotatory
inertia e!ects whereas the former is not. The error increases with increasing r as expected.

The free vibration analysis of rotating non-uniform (tapered) Timoshenko beams is
outside the scope of this paper. However, such an investigation can be carried out in
a similar manner to that described for rotating non-uniform (tapered) Bernoulli}Euler
beams in reference [7]. When dealing with the problem the beam is essentially idealized into
a number of uniform elements so that it can be treated as a stepped beam which represents
the non-uniform (tapered) beam. Naturally, results obtained from such a model will not be
exact, but will be su$ciently accurate depending on the number of elements used. Due to
the use of dynamic sti!ness elements, such as idealization will no-doubt, have better model



Figure 7. Percentage error in the third natural frequency of a rotating beam when using Bernoulli}Euler beam
theory as opposed to Timoshenko theory.
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accuracy [7] than the traditional "nite element method. A detailed procedure for improving
the accuracy from approximate results by using a parabolic limit is described in reference
[7]. The same procedure (which basically minimizes the discretization error) can be used for
rotating non-uniform (tapered) Timoshenko beams.

4. CONCLUSIONS

Starting from the governing di!erential equations of motion in free vibration, an exact
dynamic sti!ness theory has been developed for a rotating Timoshenko beam. The theory is
applied in conjunction with the Wittrick}Williams algorithms to compute the natural
frequencies of rotating Timoshenko beams with cantilever end condition. The results
obtained from the present theory are compared with published results and the predictable
accuracy of the dynamic sti!ness theory is con"rmed. The e!ects of rotatory inertia, shear
deformation and rotational speed on the natural frequencies of rotating Timoshenko beams
are demonstrated by numerical results. During the course of this investigation an error in the
published literature, which devalue the theory, was detected, and was judiciously corrected.
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APPENDIX A: DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS
OF MOTION OF A ROTATING TIMOSHENKO BEAM

Using the co-ordinate system and notation of Figure 1(b), the uniform strain e
0
(y) of the

cross-section at a distance y from the origin of the rotating Timoshenko beam due to the
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action of the centrifugal force ¹(y) alone is given by

e
0
(y)"¹(y)/EA. (A1)

where E is Young's modulus and A is the area of cross-section and

¹(y)"P
L

y

oAX2 (r
i
#y) dy"oAX2 Mr

i
(¸!y)#(¸2!y2)/2N. (A2)

Note that the outboard force F at the right-hand end of the beam, see Figure 1(b) and
equation (3), is omitted here for simplicity and is unnecessary in the derivation of the
governing di!erential equations.

The axial displacement u
0
(y), which is uniform across the cross-section, is related to the

strain e
0
(y) by

u@
0
(y)"e

0
(y)"¹ (y)/EA. (A3)

where the prime denotes di!erentiation with respect to y.
By introducing a #exural displacement w(y) of the beam neutral axis in the Z-direction

for an element of length dy at a distance y from the origin and following Timoshenko's
beam theory, under #exural displacement (w) and section rotation (h) the shearing strain (c)
induced in the element is given by

c"w@!h. (A4)

As a result of the combined axial and #exural displacements, the element dy will undergo
the following deformations. On the left-hand face of the element, a point at a distance
gN away from the neutral axis in the Z direction will have the co-ordinates M0, (y#u

0
! gN h),

(g6 #w)N whereas the corresponding point on the right-hand face will have the co-ordinates
[0, My#u

0
! g6 h#(1#u@

0
!gN h@) dyN, (gN #w#w@ dy)].

Thus, the strain of the element at a distance gN from the neutral axis is given by

e(y, g)"[(1#u@
0
!gN h@)2#(w@)2]!1:u@

0
!gN h@#1

2
(w@)2. (A5)

The strain energy due to #exure ;
f

then follows as

;
f
"PPP

V

Ee2
2

d<"
E

2 P
A
P

L

0

M(u@
0
!gN h@#1

2
(w@)2N2 dy dA. (A6)

Since the neutral axis passes through the centroid and the area (A) and the second moment
of area (I) of the cross-section are, respectively, given by A":

A
dA and I":

A
gN 2 dA,;

f
can

be simpli"ed as

;
f
"

EA

2 P
L

0

(u@
0
)2dy#

EI

2 P
L

0

(h@)2dy#EA P
L

0

u@
0
(w@)2dy. (A7)

Using equations (A2) and (A3) and expressing u@
0

in terms of the centrifugal tension ¹ (y)

;
f
"C

1
#1

2 CP
L

0

EI(h@)2dy#P
L

0

¹(w@)2dyD . (A8)

where C
1

is a constant and ¹ is given by equation (A3).
The strain energy due to shear ;

s
is given by

;
s
"PPP

V

Gc2
2

d<"1
2 P

A
P

L

0

Gc2dAdy"1
2

kAG P
L

0

c2dy. (A9)
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where G is the shear modulus, k is the section shape factor so that kAG is the shear rigidity
of the beam cross-section.

Substituting the expression for c from equation (A4) into equation (A9) gives

;
s
"1

2 P
L

0

kAG(w@!h)2dy. (A10)

The total strain energy U of the beam is given by

U";
f
#;

s
"1

2 CP
L

0

MEI(h@)2#¹(w@)2#kAG(w@!h)2N dyD#C
1
. (A11)

The kinetic energy of the rotating Timoshenko beam element can be expressed in terms of
the velocity components of the point at a distance gN from the neutral axis. From Figure 1(b),
the three components of the velocities of this point in the X, > and Z directions are,
respectively, given by

<
x
"!X(y#u

0
!gN h), <

y
"!gN hQ , <

z
"wR . (A12)

Thus, the kinetic energy T of the rotating Timoshenko beam can be expressed as

T"1
2 P

A
P

L

0

(<2
x
#<2

y
#<2

z
) odAdy. (A13)

Substituting equation (A12) into equation (A13) gives
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2 CP
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L
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owR 2dy dAD. (A14)

The "rst of the above integrals is constant and the third one is zero so that the kinetic energy
T takes the following simpli"ed form:

T"C
2
#1

2 CP
L

0

oI (X2h2#hQ 2) dy#P
L

0

oAwR 2dyD, (A15)

where C
2

is a constant.
The Lagrangian L"T!U can now be formulated as

L"1
2 P

L

0

[MoI (hQ 2#X2h2)#oAwR 2N!MEI(h@)2#¹(w@)2#kAG(w@!h)2N] dy#C
2
!C

1
.

(A16)

Hamilton's principle states that d :tÈ
tÇ
L dt taken between arbitrary intervals of time (t

1
, t

2
) is

stationary for a dynamic trajectory. Therefore

d P
tÈ

tÇ

Ldt"0. (A17)

Substituting equation (A16) into equation (A17) gives

P
tÈ

tÇ
P

L

0

[MoI (hQ dhQ #X2hdh)#oAwR dwR N!MEIh@dh@#(¹w@) dw@#kAG (w@!h) (dw@!dh)N]

]dydt"0. (A18)
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On integrating by parts there follows

P
tÈ

tÇ
P

L

0

[M(¹w@)@!oAwK#kAG(w@@!h@)N dw#MEIh@@#kAG (w@!h)!oIhG#oIX2hN dh] dt

#P
tÈ

tÇ

[!EIh@dh]L
0

dt#P
tÈ

tÇ

[!M¹w@#kAG(w@!h)N dw]L
0

dt#P
L

0

[oIhQ dh#oAwR dw] tÈtÇ

]dy"0. (A19)

Since dw and dh are completely arbitrary, the di!erential equations of motion follow from
the above equation as

(¹w@)@!oAwK#kAG (w@@!h@)"0 (A20)

and

EIh@@#kAG(w@!h)!oIhG#oIX2h"0. (A21)

From the natural boundary conditions, equation (A19) gives the expression for bending
moment (M) and shear force (Q) as

M"!EIh@ (A22)

and

Q"!¹w@!kAG(w@!h)"!¹w@!M@!oIhG#oIX2h . (A23)
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